咨 詢 電 話:0519-80897318
傳 真:0519-87330017
網(wǎng) 址: ieyebook.com.cn
公 司 地 址:江蘇省溧陽市溧城鎮(zhèn)城北工業(yè)新區(qū)吳潭渡路16號
生物質(zhì)固體成型燃料全生命周期評價 |
摘要:為探討生物質(zhì)固體成型燃料的能源效率和溫室氣體排放量,采用全生命周期評價分析原理,對北京地區(qū)以玉米秸稈為原料的生物質(zhì)固體成型燃料進(jìn)行全生命周期分析。結(jié)果表明:生物質(zhì)固體成型燃料的凈能量為13243.5MJ/t,能量產(chǎn)出投入比為10.8,其中,種植階段、加工階段以及秸稈運(yùn)輸能源消費(fèi)居前三位,分別占總量的58.65%、24.23%、12.58%。CO2當(dāng)量排放量為11.13g/MJ,約為煤的1/9。這說明生物質(zhì)固體成型燃料具有較大的節(jié)能、減少溫室氣體排放的效益。 0引言 目前,我國大力推廣發(fā)展可再生能源,生物質(zhì)固體成型燃料作為其中的一部分,其生產(chǎn)過程產(chǎn)出的有效能與其能源消耗相比具有多大優(yōu)勢亟需進(jìn)行系統(tǒng)的評價。生物質(zhì)能的生命周期評價研究主要針對生物質(zhì)液體燃料[1,2]。 在對生物質(zhì)固體成型燃料的能量平衡研究方面,朱金陵等[3]指出生物質(zhì)固體成型燃料加工階段的能耗最高,該燃料大大降低了CO2的排放,但研究模型中假設(shè)玉米種植階段CO2是永久循環(huán)的,忽略了此過程的機(jī)械、電力、油等消耗的一次能源和相應(yīng)的溫室氣體排放,因此對凈能值和能量產(chǎn)出投入比估值過高;林成先等[4]對煤和秸稈成型燃料生命周期進(jìn)行對比,研究假設(shè)煤與秸稈成型燃料的運(yùn)輸距離均為400km,得出秸稈成型燃料對環(huán)境的影響負(fù)荷比煤小79.8%,成型燃料的能量產(chǎn)出投入比低且生命周期成本比煤高,但生物質(zhì)固體燃料建廠可選擇地點(diǎn),不受地質(zhì)因素限制,該研究對秸稈成型燃料的運(yùn)輸距離估值過高,導(dǎo)致秸稈成型燃料的能量和環(huán)境效益低,并且該研究也忽略了種植階段及原料運(yùn)輸?shù)冗^程。因此,應(yīng)合理選擇生物質(zhì)固體燃料的生命周期分析邊界,從而正確評價生物質(zhì)固體成型燃料能耗與排放,對該技術(shù)的推廣和發(fā)展具有重要意義。 本文采用全生命周期評價分析(LCI)原理[5],利用已有評價系統(tǒng)[6],建立玉米秸稈類生物質(zhì)固體成型燃料的分析模型,針對北京地區(qū)玉米種植、生物質(zhì)固體成型燃料技術(shù)及能源使用狀況,定量評價玉米秸稈轉(zhuǎn)化為生物質(zhì)固體成型燃料的能量平衡關(guān)系及溫室氣體的排放量,從而為正確評價我國生物質(zhì)固體成型燃料的能源可持續(xù)性提供參考依據(jù)。 1生物質(zhì)固體成型燃料全生命周期系統(tǒng) 1.1模型的建立 可持續(xù)評價系統(tǒng)是利用線性規(guī)劃法和電子數(shù)據(jù)表工具(SPREADSHEET)進(jìn)行數(shù)學(xué)優(yōu)化。本研究為生物質(zhì)固體成型燃料,包括農(nóng)業(yè)種植、生物燃料工業(yè)轉(zhuǎn)化等的能量平衡和污染物排放,可利用該模型原理建立生物質(zhì)固體成型燃料的生命周期評價系統(tǒng)。 生物質(zhì)固體成型燃料生命周期系統(tǒng)是由化石能和太陽能共同驅(qū)動的生物能源系統(tǒng),其能量的輸入、輸出及內(nèi)部流動如圖1。研究功能單元為年產(chǎn)1萬t的生物質(zhì)固體成型燃料。研究范圍從玉米種植階段到生物質(zhì)固體成型燃料應(yīng)用階段的全生命周期。 系統(tǒng)分為玉米種植階段、秸稈從田間到燃料廠運(yùn)輸階段、生物質(zhì)固體燃料加工成型階段、生物質(zhì)固體成型燃料的運(yùn)輸及生物質(zhì)固體成型燃料的應(yīng)用5個階段。該系統(tǒng)的輸入能量包括玉米種植所投入的能源(包括種子、機(jī)械、肥料、農(nóng)藥、電力及燃料等)、生物質(zhì)固體成型燃料轉(zhuǎn)化階段消耗的電力及各種運(yùn)輸?shù)挠秃募吧镔|(zhì)固體成型燃料應(yīng)用的電耗。 研究5個階段的直接能源(煤、石油、電力等)和間接能源(化肥、農(nóng)藥等)的開采與生產(chǎn)相關(guān)的能量投入和溫室氣體排放。該周期系統(tǒng)分析假設(shè)玉米生長過程吸收的碳與生命結(jié)束排放的碳是可循環(huán)的。本研究忽略生物質(zhì)固體成型燃料廠廠房、設(shè)備建設(shè)的耗能、人工以及燃燒后的灰渣回田的能量。 1.2評價指標(biāo) 1.2.1凈能量與能量產(chǎn)出投入比 研究輸入的能源與輸出的生物質(zhì)能之間的關(guān)系,可以用凈能量或能量產(chǎn)出投入比來表示。凈能量為生物質(zhì)固體成型燃料燃燒釋放的熱能與生產(chǎn)生物質(zhì)固體成型燃料消耗的總能量之差。能量產(chǎn)出投入比為生物質(zhì)固體成型燃料燃燒釋放的熱能與生產(chǎn)生物質(zhì)固體成型燃料消耗的總能量之比: 2數(shù)據(jù)來源 2.1種植階段 玉米種植能量輸入包括種子、氮肥、磷肥、鉀肥、殺蟲劑、除草劑、農(nóng)機(jī)(柴油)、電力(灌溉)[2]。各地區(qū)典型種子和化肥用量投入見表1[9,10]。 由表1可見,不同地區(qū)的用量存在差異。本研究采用北京郊區(qū)數(shù)據(jù)進(jìn)行計算。該地區(qū)主要為“冬小麥-夏玉米”輪作方式。夏玉米生育期短、生長發(fā)育快、需肥多,尤其是對N、P、K的吸收。N肥采用尿素,折合成N用量約為22.5g/m2,磷肥折成P2O5用量約為5.0g/m2,鉀肥約為3.0g/m2。除草劑采用防治效果較好的50%乳油,在玉米播種后出苗前使用,施用量為0.3mL/m2,加水750L后噴霧除草。殺蟲劑采用2.5%敵百蟲粉,施用量為0.75g/m2[9]。 農(nóng)機(jī)包括播種機(jī)、收割機(jī)、脫粒機(jī)及打捆機(jī),均使用柴油動力,其耗油量總估算值為10.5mL/m2。電力主要是水泵灌溉,北京市玉米種植約9065.76萬m2,灌溉用水均為地下水,用水量約1300萬m3,水泵采用TOP40-4型,電機(jī)功率6.3kW,效率為40m3/h,則用電量約為0.0225kWh/m2[10]。溫室氣體排放計算詳見表2。 該階段主要產(chǎn)出玉米和玉米秸稈,產(chǎn)量數(shù)據(jù)來源于北京市大興區(qū)農(nóng)戶,按照每平方米產(chǎn)0.75kg玉米,單位能量為44.3MJ/kg[9],9000kg玉米秸稈,單位能量為14.6MJ/kg計算。本文主要考慮玉米秸稈的利用產(chǎn)生的能耗和溫室氣體排放,因此,采用能量分配法分配種植階段的投入能量,即每萬平方米產(chǎn)出的玉米秸稈能量占玉米種植總能量的30%。 2.2秸稈原料運(yùn)輸階段 秸稈到燃料廠的運(yùn)輸階段,玉米秸稈加工的損耗率約16.67%,即1萬t生物質(zhì)固體成型燃料需要1.2萬t秸稈。秸稈收集方式采用農(nóng)民分散送廠和加工廠直接收集兩種,秸稈運(yùn)輸主要用農(nóng)用柴油車,柴油的能量強(qiáng)度為38.72MJ/L[15],耗油量0.056L/(t·km)[16,17]。 運(yùn)輸距離采用收集半徑模型計算。原料的收集半徑中,資源收集量=收集面積×單位面積耕地廢棄物產(chǎn)出的秸稈量×耕地面積占區(qū)域面積的比例×秸稈用于能源的比例[18]??傻迷系氖占霃接嬎隳P蜑椋?/p> 我國年秸稈用于能源和廢棄總量占總秸稈量的43%[19],大興區(qū)土地面積1031km2,其中玉米種植面積25000m2,玉米種植面積占全區(qū)的比例為24%,設(shè)大興周邊地區(qū)的玉米種植面積與大興區(qū)種植情況一致。玉米秸稈單位產(chǎn)量為0.90kg/m2,年秸稈需要量12000t,由公式(4)可計算出原料的收集半徑為65.6km。 2.3生物質(zhì)固體成型燃料加工階段 生物質(zhì)固體成型燃料加工階段,采用生產(chǎn)率較高的環(huán)模式成型機(jī)[20],工藝路線包括原料粉碎、細(xì)粉、輸送、除塵、成型、冷卻、包裝等工序,分為壓塊和制粒兩條,其中壓塊只進(jìn)行一次粉碎即可成型,省略了細(xì)粉工序。本模型計算假設(shè)制粒和壓塊各生產(chǎn)5000t生物質(zhì)固體成型燃料,生物質(zhì)固體成型燃料加工主要消耗電力能源,制粒消耗93.375kWh/t,壓塊消耗86kWh/t,數(shù)據(jù)來源于生物質(zhì)固體成型燃料廠。 單位電力投入的能源及碳排放參照文獻(xiàn)[21~25],電力投入各能源比例參考中國統(tǒng)計年鑒。本階段包含燃料廠到生產(chǎn)車間轉(zhuǎn)運(yùn)過程的能量,此過程運(yùn)輸?shù)钠骄嚯x設(shè)為1km,采用叉車,柴油的能量強(qiáng)度為38.72MJ/L,耗油量0.05L/(t·km)[17]。 2.4生物質(zhì)固體成型燃料運(yùn)輸階段 生物質(zhì)固體成型燃料運(yùn)輸一般采用四輪柴油貨車,柴油的能量強(qiáng)度為38.72MJ/L,耗油量為0.05L/(t·km)[17],設(shè)運(yùn)輸?shù)钠骄嚯x為30km。 2.5生物質(zhì)固體成型燃料使用階段 大興生物質(zhì)固體成型燃料主要供溫室大棚使用,使用時間為2400h,采用生物質(zhì)鍋爐供暖,其單位用量10.4kg/h,1萬t生物質(zhì)固體成型燃料可供400個溫室大棚使用(數(shù)據(jù)來源于大興溫室大棚用戶)。生物質(zhì)固體成型燃料燃燒消耗部分電能,溫室大棚鍋爐電機(jī)有效功率為20W(數(shù)據(jù)來源于北京生物質(zhì)鍋爐廠家)。生物質(zhì)固體成型燃料燃燒排放為零,即作物光合作用吸收的物質(zhì)的量等于燃燒所排放的物質(zhì)的量。 3結(jié)果與分析 3.1能量投入 3.1.1種植階段 種植階段主要產(chǎn)出玉米和玉米秸稈,經(jīng)模型計算,該階段的總能耗為2.3867MJ/m2,玉米秸稈占玉米種植總能量的30%,即分配后玉米秸稈的能量輸入為0.7160MJ/m2。種植階段主要能量投入排在前三位,依次為氮肥、農(nóng)機(jī)油耗、灌溉電力,分別占54.2%、16.9%、11.2%(見圖2)??梢姾侠硎┯玫蕦δ芰枯斎胗兄匾绊?,可以大大減少一次能源的使用量。因此大力推廣中耕或免耕技術(shù)和節(jié)水灌溉技術(shù)可大大減少玉米種植的能量投入,以降低生產(chǎn)生物質(zhì)固體成型燃料的能耗。 3.1.2秸稈原料運(yùn)輸階段 原料的收集運(yùn)輸是生物質(zhì)固體成型燃料的能量成本投入的重要環(huán)節(jié)之一,原料運(yùn)輸距離短可降低生物質(zhì)固體成型燃料的生產(chǎn)成本,運(yùn)輸距離短才能占據(jù)市場優(yōu)勢,否則成本過高會導(dǎo)致生物質(zhì)固體成型燃料難以推廣,因此合理選擇建廠地點(diǎn)非常重要。本研究原料的運(yùn)輸半徑經(jīng)計算為65.6km。原料從田間運(yùn)輸?shù)郊庸α蠄龅哪芎臑?70.7MJ/t。 3.1.3生物質(zhì)固體成型燃料加工階段 生物質(zhì)固體成型燃料加工階段,生產(chǎn)1t生物質(zhì)固體成型燃料所投入的能量為328.7MJ,主要為電力消耗。因此,如何降低生產(chǎn)設(shè)備的能耗是控制該過程能量投入的關(guān)鍵所在。 3.1.4生物質(zhì)固體成型燃料運(yùn)輸階段 生物質(zhì)固體成型燃料銷售主要為運(yùn)輸能耗,燃料的主要利用方式為周圍溫室大棚供暖,運(yùn)輸距離設(shè)為30km,能量消耗為58.1MJ/t。 3.1.5生物質(zhì)固體成型燃料使用階段 生物質(zhì)固體成型燃料的使用燃燒階段爐具配套電機(jī)是能量消耗的主要因素。經(jīng)測算使用過程的電力消耗3.5MJ/t。 3.2能量產(chǎn)出 生物質(zhì)固體成型燃料燃燒熱值為14600MJ/t,即產(chǎn)出的生物質(zhì)固體成型燃料燃燒釋放的能量為14600MJ/t。 3.3凈能量及能量產(chǎn)出投入比 生物質(zhì)固體成型燃料總能量投入1356.5MJ/t,與產(chǎn)出能量比較,生物質(zhì)固體成型燃料的凈能量為13243.5MJ/t,能量產(chǎn)出投入比為10.8。可見,能源的轉(zhuǎn)化效率高,從能量角度看生物質(zhì)固體成型燃料技術(shù)具有較大優(yōu)勢。 整個生命周期過程中,能量投入主要是種植階段,約占58.65%;其次是生物質(zhì)固體成型燃料加工階段,約占24.23%;然后是秸稈原料運(yùn)輸階段,約占12.58%;燃料成品運(yùn)輸階段,約占4.28%;其余是成品燃燒電力消耗階段,約占0.25%,如圖3所示。 3.4溫室氣體的排放 經(jīng)計算CO2當(dāng)量值為11.13g/MJ,即生物質(zhì)固體成型燃料釋放溫室氣體(CO2當(dāng)量)為11.13g/MJ。各階段排放的CO2當(dāng)量如圖4所示,種植階段所排放的溫室氣體最多,對環(huán)境影響最大,占總溫室氣體排放的58.8%。加工電耗約占24.5%,原料運(yùn)輸占12.4%,銷售運(yùn)輸占4.1%,生物質(zhì)固體成型燃料應(yīng)用電耗占0.3%。其中種植階段N肥的溫室氣體排放占種植階段總量的56.25%,如圖5所示。N2O的排放是其主要影響因素,因此合理施用氮肥對控制溫室效應(yīng)是最有效的途徑。此外,如何實現(xiàn)氮肥行業(yè)的節(jié)能減排和合理施用氮肥是解決能耗和排放問題的重點(diǎn)。 3.5與煤炭比較 煤炭整個生產(chǎn)過程中能量投入主要為采選過程的電耗和運(yùn)輸?shù)哪芰肯摹C禾客度氲哪茉粗?,石油消耗量?.002MJ/MJ,煤碳消耗量為0.053MJ/MJ[8]。 即1t煤需投入的總能量1149.94MJ,1t煤產(chǎn)出能量20908MJ,凈能量為19758.06MJ/t,能量產(chǎn)出投入比為18.2,溫室氣體(CO2當(dāng)量)排放量為100.5g/MJ[8]。 煤與生物質(zhì)固體成型燃料產(chǎn)出1MJ能量的能量投入、凈能量及CO2排放比較如圖6所示,煤的能量投入約是生物質(zhì)固體成型燃料的0.6,而溫室氣體排放量是生物質(zhì)固體成型燃料排放量的9倍。隨著煤炭能源的枯竭,生物質(zhì)固體成型燃料作為一種新型無污染的可再生能源,優(yōu)勢將逐漸顯現(xiàn)。 4結(jié)論 1)基于生命周期清單分析原理,利用BSAS系統(tǒng),建立評價模型,定量分析了生物質(zhì)固體成型燃料從種植到燃燒整個生命周期的能源投入和溫室氣體排放。以北京市的玉米秸稈生產(chǎn)生物質(zhì)固體成型燃料為例,對其進(jìn)行能量平衡分析,凈能量為13243.5MJ/t,能量產(chǎn)出投入比為10.8,產(chǎn)出大于投入,且能源轉(zhuǎn)化效率較高; 2)生物質(zhì)固體成型燃料全生命周期種植階段的耗能最大,其中氮肥、機(jī)械耗油、灌溉電力是影響該過程能源消耗的主要因素。種植階段對全球變暖潛力的影響最大,占整個生命周期指標(biāo)的58.8%,其中氮肥的溫室氣體排放量占種植階段的總排放量的56.25%。如何降低氮肥用量是減少生物質(zhì)固體成型燃料能耗與溫室氣體排放的最關(guān)鍵因素; 3)生物質(zhì)固體成型燃料的加工階段的能耗其次,占總能耗的24.23%,排放的溫室氣體占總排放的24.5%。因此,如何降低成型過程的電耗是影響生物質(zhì)固體成型燃料的能耗和溫室氣體排放的關(guān)鍵因素之二; 4)與煤相比,生物質(zhì)固體成型燃料的溫室氣體排放量不到煤的1/9,能源環(huán)境效益巨大 |